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The critical properties and the spectrum of the quantum Ashkin-Teller chain 
are investigated by perturbation expansion around the exactly soluble Ising 
decoupling limit. The critical exponents are found to satisfy the hyperscaling 
relation and they are consistent with the conjectured values. The critical 
Hamiltonian in the finite-size scaling limit is transformed into a two-band 
spin-l/2 Fermi system, where the interaction energy in first order is the product 
of the band magnetizations. The complete spectrum is shown to exhibit a con- 
formal structure with infinite primary operators, the anomalous dimensions of 
which are consistent with a Gaussian form. 
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1. I N T R O D U C T I O N  

The app l i ca t ion  of conformal  invar iance  in the theory  of cri t ical  
p h e n o m e n a  has  become ext remely  fruitful for two-d imens iona l  classical and  
one -d imens iona l  q u a n t u m  systems. ~1l The  ma in  deve lopments  of  the theory  
have been achieved in two independen t  areas. The  first i m p o r t a n t  achieve- 
ment  is due to Belavin et al. ~2) and  F r i edan  et a/.(3): the comple te  classifica- 
t ion of cri t ical  theories  for conformal  a n o m a l y  c < 1. 

The  o the r  deve lopmen t  of  the theory  is due  to Cardy ,  ~1'4) who 
ob ta ined  a powerful  m e t h o d  to de te rmine  the a n o m a l o u s  d imens ions  of  
cri t ical  ope ra to r s  by  using conformal  m a p p i n g  to relate  the p rob l e m in the 
infinite p lane  to one in a s impler  finite geometry .  Let  us define the cri t ical  
H a m i l t o n i a n  H of the two-d imens iona l  classical  system at  the bu lk  cri t ical  
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point through the transfer matrix T =  exp ( -H) .  Then, according to con- 
formal invariance, (4) the excitation spectrum of H on a periodic chain with 
N lattice sites has a towerlike structure in the finite-size scaling (FSS) 
limitt5~: 

E i -  Eo = ((2~r/N)(x + m + m') + O(1/N 2) (1.1) 

Here Eo and Ei are the energy of the ground state and the ith excited state 
of H, respectively, x is the anomalous dimension of a primary operator, 
and m and m' are nonnegative integers. For two-dimensional classical 
models ( =  1, while for one-dimensional quantum models ( is a normalizing 
factor, the so-called sound velocity. (6) There is a further relation between 
the FSS correction to the ground-state energy of the critical Hamiltonian 
with periodic boundary condition (BC) and the conformal anomaly 
number(7,8): 

Eo( N ) = Eo( oO ) - (rc/6N)(c + O(1/U 2) (1.2) 

These relations (1.1)-(1.2) give a very efficient numerical and analytical tool 
to investigate the operator content (anomalous dimensions) of different 
critical models. 

After classification of two-dimensional critical theories with c < 1, (2'3) 

more attention has been paid to models with c = 1. 
Common features of these models are the coupling-dependent critical 

exponents and the presence of infinitely many primary operators among 
those also marginal ones. In the class of these models the exactly soluble 
Gaussian model (9) plays a central role, since many other models can be 
mapped into it using renormalization group arguments, ca~ Now, a 
common belief is that in the c =  1 critical theories all operators with 
coupling-dependent anomalous dimension are Gaussian-like. (9'1~ This idea 
has been the starting point for conjecturing the operator content of 
different critical models (XXZ  model, (11) AT model, (12-~7) cubic model, (18) 
etc.). 

To check the validity of these results, relations (1.1)-(1.2) can be suc- 
cessfully used. Analytical calculations can be performed for some models by 
the Bethe Ansatz method, since recently the method has been generalized 
to determine the FSS corrections to different energy levels. (19~ In this way 
several complete conformal towers with Gaussian primary operators have 
been determined for the X X Z  chain. (2~ For some other models which may 
be mapped onto the X X Z  chain with special boundary conditions some 
leading critical exponents have been determined. Among these models are 
the Ashkin-Teller (AT) model, (2~ 23) the Q-state Potts model, (21-23) and the 
O(n) model. ~24) Similar calculations have been performed for the eight- 
vertex model. (25) 
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Despite the new analytical results, there is now little hope of solving 
exactly the complete spectrum of a nontrivial interacting model along the 
critical line and in this way checking the above conjectures. Therefore it is 
of interest to determine the complete spectrum of a c = 1 model even at one 
nonspecial point. In this paper we have done this exercise for the quantum 
AT model, performing a perturbation calculation around the Ising 
decoupling point. According to our results, the critical Hamiltonian can be 
transformed in the FSS limit into a two-band spin-l/2 fermion problem, 
where the interaction in first order is given by the product of the band 
magnetizations. 

The setup of the paper is the following. In Section 2 the model is 
defined and the conjectured results are listed. In Section 3 the singularities 
of the thermodynamic quantities are determined and the hyperscaling 
relation is verified. In Section 4 the critical Hamiltonian of the model is 
expressed in terms of fermion operators and the leading critical exponents 
are determined. In Section 5 the critical Hamiltonian is diagonalized in first 
order of the interaction. Finally, Section 6 contains a summary, while the 
spectrum and the correlation functions of the reference system, the 
quantum Ising model, are presented in the Appendix. A short account of 
the results has already been published3 26) 

2. T H E  M O D E L  

The quantum AT model, (27) similarly to the classical one, may be 
defined by two interacting quantum Ising models in the following form~28): 

H = H o +  2V (2.1) 

Here the unperturbed Hamiltonian is expressed in terms of two sets of 
Pauli matrices {s~, s~), {r, x, r~}: 

N N 

Ho=H~+H~= -- ~ (s'/si+l+hS~)- ~ (r~zi+l+hz~) (2.2) 
i = l  i = 1  

while the perturbation contains four-spin and two-spin interactions 
between the S and z spins: 

N N 

V =  -- ~ sXsXi i + 1  ,~x.gxi i + 1  - h  ~ sZs~ ( 2 . 3 )  

i = l  i = 1  

The boundary conditions are chosen to be compatible with the torus; thus 

x x SN+ 1 = g, sl and rN+lx = g,z{ (2.4) 
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with Igsl = ]g~l = 1. For periodic BC, g~=g~= 1; for antiperiodic BC, 
gs = g~ = -1 ;  while for mixed BC, g~ = -g~. 

It is well known that the unperturbed Hamiltonian in (2.2) is diagonal 
in terms of fermion creation (r/k+,#k+) and annihilation (t/ks,/~k~) 
operators. (29-3~1 According to the results recapitulated in the Appendix 
[Eq. (A5)], 

Hs = Z Aks(rlk + qk, -  1/2), H~ = Z A~'~(#k + #k~- 1/2) (2.5) 
ks k~ 

where the energy of the modes A~ is given by (A6). At the critical point, 
at h* = 1, it is 

A/~ = 4 cos(k/2) (2.6) 

(In the following we use an asterisk to denote the value of the quantities 
at the critical point.) 

The allowed sets of the k~ and k~ numbers depend on the length of the 
chain, on the number of fermions Ns and N~ in the s and �9 subsystems, 
respectively, and on the form of the BC. They are from two sets; the 
possible values are listed in the Appendix [Eqs. (A9)-(All)] .  In the 
following we reexpress the interaction (2.3) in terms of fermion operators. 
Using the relations between spin and fermion variables (A17) and (A18), 
the interaction energy is easy to express as 

V= - 2  D(kl ,  k2, k3' k4) (~]~  --  ~]k l ) (~2  -~- ~]k2)(~3 - -  1"~k3)(1~4 "J[-/~k4 ) (2 .7 )  

where the summation runs over k l , k e e { k , }  and k3, k4e{k , }  , and 
D(k~, k2, k3, k4} is defined in terms of the components of the eigenvectors 
q~k and ~k [(A7), (A8)]: 

D(kl, k2, k3, k4) 
N 

= 2 (~lkl,il~k2,i+l ItIk3,i~Ik4,iq-I "~- ~'lkx,i~k2,i~Jk3,il~k4,i) 
i=1 

(2.8) 

At the critical point the gtk. i modes (A8) have the simple form 

gt~* i= -(1/N)l/2{sin[k(i+ 1/2)] + c o s [ k ( / +  1/2)]} = -~k,i+* ~/2 (2.9) 

With these functions the sum in (2.8) is easy to evaluate with the result 
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D*(kl,  k2, k3, k4) 

= ( 1 / N ) { c o s [ ( k 2  + k4)/2 ] [ f ( k ,  - k2 + k3 - k4) 

- f ( k l  + kz  + k3 + k , ) ]  

+ cos[(kz - k4)/2 ] If(k1 - k2 - k3 + k4) + f ( k l  + k2 - k3 - k4)] } 

(2.10) 

Here f ( k )  = 6 (k )  - 6(21r - k) - 6(27r + k) is the sum of delta functions. We 
note for low excited states ([ks[, Ik,I ~ )  f ( k ) = 6 ( k ) .  

Closing this section, we briefly summarize the conjectured results for 
the model around the decoupling point. In the region - l / x / 2  ~< 2 ~< 1 a 
phase transition takes place in the system; the critical point is at h * =  1 
independently of 2. Along the critical line the degeneracy of the ground 
state is increased by four. The critical operators are of two classes: 
operators with constant anomalous dimensions, and those with coupling- 
dependent critical exponents. In the later case the anomalous dimensions 
are assumed to have a Gaussian form(9'13): 

x = m + m ' + ( L + M e ) 2 / ( 1 6 ~ ) + ( L - M ~ ) 2 / ( 1 6 e )  (2.11) 

with L and M nonnegative integers and e is defined as 

e = ~/[4 a rccos ( -2 ) ]  (2.12) 

The anomalous dimensions of the leading operators (energy, magnetiza- 
tion, and polarization) are (~2'27) 

x~ = ~/[2 a rccos ( -2 ) ]  

X m = 1/8 (2.13) 

Xp = x J 4  

The sound velocity of the model is conjectured as (12) 

= ~ sin(arccos 2)/arccos 2 (2.14) 

and the conformal anomaly is c = 1. 

3. P E R T U R B A T I O N  E X P A N S I O N  FOR T H E  T H E R M O D Y N A M I C  
Q U A N T I T I E S  

Different perturbation methods are widely used to determine ther- 
modynamic properties of complicated systems. These methods, however, 
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are usually not applicable at the critical point due to the lack of informa- 
tion on the correlation properties of the reference system at criticality. An 
appropriate model for such a purpose is the two-dimensional Ising model 
(and its one-dimensional quantum version). An expansion around an Ising 
limit was first performed by Kadanoff and Wegner (32) for the eight-vertex 
model. Later the method was applied for the classical AT model (33'34~ and 
for generalized Ising models. (3s) In this paper we perform the perturbation 
calculation for the quantum AT model around the Ising decoupling limit. 
In contrast to the previous work, (3~ 35) we determine not only the 
singularities of the thermodynamic quantities (Section 3), but the spectrum 
of the critical Hamiltonian in the FSS limit as well (Sections 4 and 5). 

3.1. Ground-Sta te  Energy 

The ground-state energy per site near the decoupling limit may be 
written as 

Eo/N = - 2 ( 0 [  s~s~ [ 0 )  - 2h(O[ s~ 10) 

- 21-(01 sTs~lO>2 + h(OIs~  10>2] + 0 ( 2 2 )  (3.1) 

where (0[ .. .  10) denotes the average in the ground state of the quantum 
Ising model. Eo/N can be expressed in closed form using (A19): 

Eo/N= - (4/TO)(1 + h) E(h') 

- 24/rcZ{EZ(h) + (1/h)[E(h) + (h 2 - 1) K(h)] 2 } + 0(22) (3.2) 

where K(x) and E(x) are the complete elliptic integrals of the first and 
second kinds [(A14), (A20)] and h '= 2(h)~/2/(1 + h). The E 0 is nonanalytic 
for h = 1. Using the asymptotic expansions (36) 

lim E(x) = 1 - -  ( 1 / 2 ) ( 1  - -  x)[log l1 - x [  - 2 l o g ( 8 ) ]  + .-- 
x ~ l  

lim K(x) = log(2x/2) - (1/2) log[1 - x[ + -.. 
(3.3) 

one can expand the ground-state energy 

Eo/N= - (8/rc)(1 + 2/~z) 

+ (1/7z)(1 -h )21og] l  - h i  [1 -R(2/~z) log[1 - h i ]  + ... (3.4) 
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This is equivalent to the singular behavior 

lim E~)ing/N~ ] h -  112-~(x) 
h ~ l  

with the specific heat exponent 

~(2) = (4/g)2 + O(42) 
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(3.5) 

(3.6) 

3.2. The Energy Gap 

The first excited state of the AT model is twofold degenerate at 2 = 0; 
it may be obtained if the "z" system is in the ground state and the "s" 
system is in the first excited one and vice versa. This degeneracy is preser- 
ved along the critical line. The gap around 2 = 0 may be written as 

E~ - Eo = - U{  [ ( l ls~s'~ll  > - <01sTs;10> 

+h(<l ls ; l l>-  <OIs~lO>)] 

+ 2[< 11s~s;11><Ols~s~lO>- <Ols;s~lO>2 

+hE<11s~11><OIs~,lO>-<Olsz, l O > 2 ] } + o ( 2 2 )  (3.7) 

Using (A19) and (A21), one can express the gap for h > 1 as 

E 1 - E o = Z ( h - 1 ) E l + 2 ( 2 / n ) ( h + l ) K ( h ) ] + O ( 2 2 )  (3.8) 

which according to (3.3) around h = 1 behaves as 

l i m ( E 1 - E o ) = 2 ( h - 1 ) [ 1 - 2 ( 2 / n ) l o g l h - l l ] +  ... (3.9) 
h ~ l  

Thus, the gap exponent v(2) (equal to the correlation length exponent) 
defined as 

lim ( E ,  - E 0 )  ~ 2 ( h  - 1 )~;~) ( 3 . 1 0 )  
h ~ l  

is given in first order by 

v(2) = 1 - 2(2/n) + 0(42) (3.11) 

Comparing the critical exponents in (3.6) and (3.11), we can conclude that 
they satisfy the hyperscaling relation 2 -  ~(2)= dr(2) with d =  2. Further- 
more, the x~ = d -  1Iv anomalous dimension agrees to linear order with the 
conjectured value in (2.7). 
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4. PERTURBATION EXPANSION FOR THE CRITICAL 
H A M I L T O N I A N  

4.1. In t roduct ion 

In this section the perturbation calculation is performed along the 
critical line of the model, but for finite chains. In this way the anomalous 
dimensions of the leading operators will be determined through Eq. (1.1) 
and the validity of conformal invariance for our model will be checked at 
the same time. 

The critical Hamiltonian has been expressed in terms of fermion 
operators by Eqs. (2.5), (2.7), and (2.10). Obviously the effect of V is dif- 
ferent if {k,} and {k~} are the same set or they are different. In the latter 
case the r/k+ 10) and /~k+ 10) states have different energies; consequently, 
no mixing takes place between the states of the two subsystems. In these 
sectors at 2 = 0  the Hamiltonian has no special symmetry; thus, the 
degeneracy of the levels and the values of the anomalous dimensions are 
coupling independent: they can be obtained from the Ising values at 2 = 0. 
(The 2 dependence of the gaps in the FSS limit is purely due to the sound 
velocity.) 

The situation is more complicated if {k~} and {k~} are the same set; 
thus, the s and z subsystems are indistinguisable. The consequence is 
mixing of states of the two subsystems, occurrence of an exchange energy, 
and splitting of some 2 = 0 degenerate levels. In the following these sectors 
will be investigated. 

Since the two subsystems are indistinguishable, many levels at 2 = 0 
are degenerate; thus, a degenerate perturbation calculation have to be per- 
formed. In the following we collect those terms of V (denoted by Vo) which 
act between degenerate states. Obviously Vd contains the fermion operators 
in three different possible combinations: (i) tl~ tlk#~, l~e', (ii) t/~-t/~, #k#k', 
and (iii) r/~-t/k,#~,#k. In the following we determine the interactions 
belonging to the different processes. 

(i) The diagonal term is characterized by the number kl = k2 = k and 
k 3 - - - k  4 = k ' .  One obtains for this interaction 

V~ = - (8/N) [ ~  cos(k/2)Ol: ~Ik-1/2) 1 
k 

1 
--  ( 4 / N )  ~ (fik, k ' -  6 k , - k ' ) ( r / ~  - r/k - -  1 / 2 ) ( / ~  # k ' -  1 /2 )  (4 .1 )  

k,k'  
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Here the first term is proportional to the product of the Hamiltonians of 
the subsystems (2.5): 

Vcn = --(1/ZN) H s H  ~ (4.2) 

while the second term is due to the interference effect: 

Vs~p = - (4 /N)  ~ (r/Z r/k - 1/2)(#~-/~k - 1 /2 ) -  (~/~- qk - 1/2)(/~-+~bt-k - 1/2) 
k 

(4.3) 

(ii) In the second process two fermions are created in one subsystem 
and annihilated at the same time in the other. This interaction is given as 

VZp = (4/N) ~ { [- 1 - cos(k/2) cos(k'/2)] r/ff r/~,/~k/~k, 
k > k '  

+ sin(k/Z) sin(k'/Z)r/~- q#,/~_k/~_k,} + {r/--+/~, p --+ ~/} (4.4) 

where the restriction k > k' is to avoid double counting, and the notation 
{ r /~# ,  #--* t/} means that in the first expression the characters r/ and # 
simultaneously have to be interchanged. 

(iii) In the third process fermions with k and k' numbers are 
exchanged in the two subsystems. This interaction is given in the following 
form: 

Vs3p = (4/N) ~ { [sin(k/2) sin(k'/2) - 6k,-k' cosZ(k/2)] q~- r/k'#-+k4Z-k 
k > k '  

- [1 + cos(k/2) cos(k'/2)(1 - 6~,-k,)] r/~- ~/k,#~' #k} + {r/ -+ #, /~ --+ */} 

(4.5) 

Collecting the different contributions gives the effective interaction as 

with 

Vd = Vcn + Vsp (4.6) 

v . ,  = v. p + + (4.7) 

Here Vcn is also present if {ks} and {k~} are different, and as will be shown 
later, in the FSS limit it produces the same shift on degenerate levels and 
determines the sound velocity of the model. On the other hand, Vsp is due 
to the interference effect and is present only if {ks} and {k~} are the same. 

822/55/1-2-21 
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This term splits the degenerate levels and produces coupling-dependent 
critical exponents. 

In the following we calculate the low-lying energy levels to linear order 
in ). for periodic BC. 

4.2. ~ Correct ion to the Low-Lying Levels for Periodic BC 

4.2.1. Ground-Sta te  Energy. The ground state of H0, denoted 
by ]0), is the q and # particle vacuum. The only correction to this state is 
due to Von [Eq. (4.2)] and the ground-state energy along the critical line 
is given by 

E *  = - E  P" - ( 2 / 2 N ) [ E ~ * ]  z + O(2 ~) (4.8) 

which may be written, using (A15), as 

E0* = - 4 cosec(~/2N) - 2(2/N) cosecZ(~/2N) + 0(2 2) 

= -- X(8/~)(1 + 2 / ~ ) -  (~/6N) ~(2) + ..- 

Here 

(4.9) 

((2) = 2 + 2(4/~) + 0(22) (4.10) 

denotes a normalizing factor. 
In the following we show that ((2) measures the distance between the 

equidistant levels of the conformal tower (1.1); thus, it is the sound velocity 
of the model. Let us consider a nondegenerate level (for example, in the 
{k~} r (k~} sectors) with excitation energy Ao=A~+ z1~. Then the gap of 
the perturbed system will be changed due to Vcn [Eq. (4.2)] as follows: 

A = d s + A~ - ( 2 / 2 N ) [ ( E ~ *  + As ) (E~*  + A~) - (Eo~*) 2 ] + 0(22) 

= (As + d~)E1 - ( 2 / 2 N ) E ~ * ]  + 0(22, N -z) (4.11) 

Here we use the fact that for low-lying excitations according to Eq. (1.1) 
A~ = ( 2 ~ / N ) 2 ( x s  + ms)  and A~ = ( 2 ~ / N ) 2 ( x ~  + m~); thus, 

A = ( 2 ~ / N ) ( x s + x ~ + m s + m ~ ) [ 2 + ( 4 / T c ) 2 ] +  . . .  (4.12) 

Consequently, the sound velocity is given by (4.10), which agrees to first 
order with the conjectured value in (2.14). 

Furthermore, comparing (4.9) with (t.2), we can conclude that the 
conformal anomaly of the model is c =  1 + O(22), as expected. In the 
following the first gaps of the different sectors will be determined. 
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4.2.2. Magnetization Sector  (Ns odd, N~ even or vice versa). 
The first excited state is twofold degenerate for 4 = 0 ;  they are/~+ 10) and 
r/+ 10), but there is no mixing between these two states. Thus, the states 
remain degenerate for 2 # 0, too, with the gap 

A lm2 = 2 tg(rt/4N) + (k/N) cos-Z(rc/4N) = (27z/N) ~(2)(1/8) + -.. (4.13) 

Comparing this result with (1.1), we can conclude that the anomalous 
dimension of the magnetization operator is xm = 1/8, in accordance with 
the conjectured result (2.13). 

4.2.3. Polarization Sector (Ns odd, N~ odd). The first excited 
state is nondegenerate for 2 = 0; it is given by t/~ + g~+ [0). The correspond- 
ing gap 

Af = 4 tg(rc/4N) + 0(2 2) (4.14) 

is independent of 2 in first order. Normalizing with the sound velocity 
(4.10), one obtains 

d ]o = (2re/N)(1/4) [ 1 - 2(2/rt) ] ~(2) + .-- (4.15 ) 

Thus, the anomalous dimension of the polarization operator is 

xe = (1/4)[1 - 2(2/rt)] + O(2 2) (4.16) 

in accordance with (2.13). 

4.2.4. E ne rgy  S e c t o r  (Ns odd, N, odd). The first excited state is 
#k, P-k, 10) with twofold degenerate; for 4 = 0  they are r/~/_+k~10) and + + 

kl = rc-rc/N. These states are mixed by Vsp and the secular determinant 
determining the energy perturbation 2E~,2 is given by 

A B E "2  A--B1. 2 = 0  (4.17) 

with 

A = -(E~*/2N)[E~* + 4 cos(k1/2)] 

B = (8/N) sin2(kl/2) 
(4.18) 

and with the solution Et,2 = A + B. Then the first two gaps in the energy 
sector are given by 

A{,2 = 8 sin(Tz/2N) + 2(8/N)[1 _+ cosZ(rc/2N)] 

= (2re/N) ~(2)[1 + 2(2/7r)] + .. .  (4.19) 
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Thus, the anomalous dimension of the energy operator is 

Xe = 1 -- 2(2/n) + 0(2 2) (4.20) 

in accordance with the conjectured result (2.13). 
To illustrate the appearence of conformal towers, we calculate the next 

levels in the energy sector. The second excited state is eightfold degenerate 
for 2 = 0, and these states belong to two orthogonal subspaces for 2 r 0 
spanned by the vectors 

+ + + 0 + + qk~/g2[O}, r/_+klr/_~2l }, /tk,/,tk 210}, F_+k,#+k=[O} 

and 

+ 0 

with k 2 = n - 3 ~ / N .  For 2:~0 both sets of four levels split, with the 
following gaps: 

A~, 4 = 4dl + 4d2 + 2(4/N){ 1 + d2/d 1 -I- [-1 + cos(2n/N)] } 

A~,6 = 4dl + 4d2 + 2(4/N) { 1 + d2/dl + [1 - cos(n/N)] } 
(4.21) 

where di = cos(ki/2). In the FSS limit these gaps behave as 

{22-+20 
A~,4,5.6 = (2~/N) ~(2) -t- 2(2/n) (4.22) 

and all these levels are two-fold degenerate. We can see that the exponents 
given in the first row of (4.22) belong to new primary operators, while 
those in the second row are elements of the conformal towers of the 
primary operators in (4.19). To determine the gaps for other excited states, 
one can proceed in a similar way. The calculation, however, become 
extremly complicated for such levels, which are highly degenerate, since 
high-dimensional secular matrices have to be diagonalized. We show in the 
next section that this task can be done analytically in the FSS limit. 

5. D I A G O N A L I Z A T I O N  OF THE H A M I L T O N I A N  IN THE 
FSS L IMIT  

In the FSS limit only O(1/N) terms of the Hamiltonian are important 
and we restrict ourselves to low-lying fermion states, i.e., for which Ikl = 
n--m~/N, m.~N, and Isin(k/2)l = 1 + O(1/N2), cos(k/2)=mn/2N. In this 
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limit the coefficients of Vsp in (4.4)-(4.5) do not depend on k and k' and 
these equations are reduced to 

~s2p = (4/N) ~ [q~- ,~, #k#k' + sign(kk')r/~- q~ # k#-k ' ]  
k < k '  

+ (5.1) 

~-3p = (4/N) Z [ - q ;  r/k'#~' #~ + sign(kk') t/~- qk,p+k,#_k]  
k < k '  

+ {,7 -- ,  # ,  # -- ,  ,7 } (5.2) 

The sum of these terms together with V~p in (4.3) can be written in the 
following form: 

where 

~'sp = (4/N) ~ Vk, k' (5.3) 
k,k '  

V~,k, = (1/2)[t/Z- r/~, #~,#~,, 

+ sign(kk') r/~- t/s # -k# ~' + #~- #~' t/kr/k' 

+ sign(kk') #~ #~, t/_kr/-k,] - q~- t/k,#~ #k 

+ sign(kk') t/+ t/k,#+k,# k (5.4) 

and there is no restriction on k and k'. 
Now let us collect terms with the same absolute values of k and k' and 

define 

~'k,~, = Vky + V_~,k, + Vk-k' + V_h, k' (5.5) 

for ~ > k, k' > 0. (The k = ~ and k = 0 terms will be considered separately.) 
In terms of the fermion operators 

a~ = (1/x/2)(q~- + it/+~), b~- = (1/,,/2)(#~ + i#_+k) (5.6) 

12k, k, has a simple form: 

l?~,k, = -- [a~ bk + akb~  ][a  +_k,b -k, + a - k ' b  +-k '] 

-- [a~, bk, + ak, b~, ] [a +_eb_~ + a_kb  +-k] 

= e k e _ k , + e k ,  e_k (5.7) 
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Here ek is defined as 

and it is diagonal 

ek= --i(a + b ~ + a k b  ~ )  (5.8) 

ek = g~- gk - h i  hk (5.9) 

in terms of the new Fermi operators: 

g ]  = (1/~/2)(a~- + ib~ )7 h~- = (1/x/2)(a ] - ib~ ) (5.10) 

Thus, the effektive interaction (5.3) is also diagonal: 

~'sp = ( 4 / N ) ~  (eke_k,+ek, e k ) = ( 8 / N ) ( ~ e k t ( ~ e k l  (5.11) 
n>k,k'>O \ > / \  > / k  0 k 0 

The ~k  ek operator may be considered as a magnetization operator if 
we assign spin up for the gklO) fermions and spin down for the h~[0) 
fermions. Let us introduce spin-l/2 fermion operators with the following 
definitions: 

+ =h~- 
(5.12) 

+ __ + dk, l - - g + k ,  d~,+=h+k, ~>>.k~O 

In this way two new subsystems have been introduced, whose 
Hamiltonians are given by 

He ~ flk(C~oCk~-- 1/2), Ha= ~ ~ + = , , Ak(dk,~d~,o- 1/2) (5.13) 
k,a k,a 

where the summation runs for ~/> k/> 0 and a = +1. The energy of modes 
is Ak=Ak for k C0, and A o = 2  to avoid double counting. Obviously 
Ho = Hc + Ha. Then we define magnetization operators for the subsystems 
a s  

M~ E + M d :  ~ + (5.14) = akdk,~dk, a 17kCk, aCk, a~ 
k,a k,a 

where a k =  _+1 for ~ > k >  0, but a o = a ~ =  +1/2. 
The effective Hamiltonian is diagonal in terms of these variables in the 

FSS limit: 

H o = H c + Ha 

Vcn = - -  (1/2N) Hc Ha + 0 (1/N 2) 

V~p = (8/N) McMa + O(1/N 2) 

(5.15) 
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This is the main result of our paper. It means that the Ashkin-Teller model 
near the decoupling limit may be transformed into a two-band spin-l/2 
fermion system, where the interaction energy is the product of the band 
magnetizations. 

Now let us distribute the states into the different sectors, i.e., let us 
construct eigenstates of the fermion number operators exp(izcN,) and 
exp(i~zN~). We note that the operator 

T= TcTa= ~I a~ I-[ a~  (5.16) 
k c kd  

commutes with the Hamiltonian; thus, the eigenstates of H may be 
classified as Tgo(+)= go (+) and Tgo(-)= -go(-). If go is not an eigenstate of 
T, then (T go _+ go) is an eigenstate with eigenvalues + 1. Now using the 
definitions (5.6), (5.10), and (5.12), it is easy to show, that go(-+) is an 
exp(iz~N~) = +_1 eigenstate. 

Closing this section, we comment on our main result in (5.15). The 
perturbation is in diagonal form and consists of two parts. Vcn produces 
the same shift on degenerate levels and, as already mentioned, determines 
the sound velocity (4.10) of the model. The other part of the perturbation, 
Vsp, splits the degenerate levels for 2 # 0. This splitting energy depends 
only on the distribution of the fermions in the two possible spin states, but 
does not depend on the energy of the level at 2 = 0. The consequence is the 
conformal tower structure of the spectrum (1.1) even for 2 # 0. Due to the 
presence of Vsp, nontrivial primary operators appear for 2 # 0. According 
to (5.15), the number of primary operators is infinite and their anomalous 
dimensions are consistent with the Gaussian values (2.11). Up to linear 
order of 2 they may be expressed as 

xi = n + n' + [(M/2) 2 + (L/4) 2 ] + 22/~[(M/2) 2 - (L/4) 23 + 0(22) (5.17) 

with n, n', M, L nonnegative integers. 

6. S U M M A R Y  

In this paper the critical properties and the spectrum of the quantum 
Ashkin-Teller model have been studied around the Ising decoupling limit. 
The Hamiltonian of the model is reexpressed in terms of fermion creation 
and annihilation operators and a linear-order perturbation calculation is 
performed using the spectrum and correlation functions of the quantum 
Ising model. The ground-state energy is found to be singular at h* = 1 and 
the specific heat exponent (3.6) to be coupling dependent. The correlation 
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length exponent (3.11) is also coupling dependent and these exponents 
obey the hyperscaling relation. 

The critical Hamiltonian is studied for finite systems with boundary 
conditions compatible with the torus. The critical Hamiltonian is exactly 
diagonalized in the FSS limit by transforming it into a two-band spin-l/2 
fermion system, where the interaction in linear order of 2 is the product of 
the band magnetizations. The model is shown to be conformally invariant, 
i.e., the amplitudes of the scaling functions relate to the anomalous dimen- 
sions of given critical operators satisfying Eq. (1.1). The complete spectrum 
of the model consists of infinite conformal towers, where the anomalous 
dimensions of the critical operators obey the Gaussian form (5.17). 

Thus, we can conclude that in this paper we have presented the first 
example for the complete spectrum of an interacting c = 1 nontrivial model, 
whose spectrum in the finite-size scaling limit is in accordance with the 
statements of conformal invariance and with the conjectures of the 
mapping into the Gaussian model. 

APPENDIX.  EXCITATION S P E C T R U M  A N D  CORRELATIONS 
OF THE Q U A N T U M  ISING M O D E L  

In this Appendix the known exact results on the quantum Ising model 
are recapitulated. 

The quantum Ising model defined by the Hamiltonian 

N 

H s :  -- E (sXsX+ l-t-hSz) ( A 1 )  

i = 1  

may be transformed in terms of fermion creation and annihilation 
operators C~ + and Cn into the quadratic form (29'3~ 

N 1 N 

H s = -  E (C+-C,,)(C++1+C,,+,)-2h ~ (C+C,,-1/2) 
n = l  n = l  

+ gs exp(ircNs)( C+ - CN)(C~- + C1) (A2) 

where g, is defined in (2.4) and 
N 

N.= ~ C+ C. (a3) 
n = l  

is the number of fermions. Through the canonical transformation 

t/k= ~ {Cn(~bkn+ ~gkn)/2+C2(~k~-- g~kn)/2} (A4) 
n = l  
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Hs may be reexpressed in the diagonal form 

with 

Hs = ~ A k ( t l ;  qk -- 1/2) 
k 

A k = 2(1 + h 2 + 2h cos  k) 1/2, k r 

Ale = 2(h - 1 ), k = 

(AS) 

(A6) 

The normal modes are given by 

qsk,, = ( 1 / N ) l / 2 [ s i n ( k n )  + cos(kn)l 

and 

(A7) 

~k,, = - ( 2 / A k ) ( h q ~ k , , + ~ k . , , + l ) ,  n # N  

gteu = --(2/Ak)[hq~ku -- gs exp(  ircNs) ~b k.~ ] 
(A8) 

We note that (for k # 0  and k#rc)  the _ k  modes are degenerate; thus, 
these eigenvectors are not uniquely determined. The advantage of the form 
used in (A7) is that it is a continuous function of k. The usual choice <3~ 
for q~kn is a piecewise function of k and it is inconvenient for a perturbation 
calculation. The price one has to pay for the simpler form (A7) is the 
mixing of the momentum eigenstates. 

The allowed set of the k numbers depends on N s, on the form of the 
BC, and on the length of the chain. In the following, for simplicity we 
restrict ourselves to odd N values. Then the possible modes are form two 
sets(31): 

e ) =  {+_reiN, ++_3~z/N, .... ___(N-1)re/N} (A9) 

and 

0 =  {0, +_2re~N, __4x/N,..., ++_ ( N -  2)rc/N, rt} (AIO) 

The allowed wavenumbers are the following: 

(a) Ns even 

kp  ~ co and kAp ~ O (A11a) 

(The subscripts P and AP refer to periodic BC and to antiperiodic BC, 
respectively.) 
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(b) Ns or N~ odd: 

kp~O a n d  kAp ~ CO 

The ground state of Hs is the fermion vacuum; 
energy is given by 

Igl6i 

(Allb)  

thus, the ground-state 

Eo = -(1/2)  ~ A k 
k 

which may be expressed in the thermodynamic limit as 

Eo/N= -(2/u)(1 + h) E(2x/h/(1 + h)) 

where 

(A12) 

(A13) 

E AP* = - 2  cot(rc/2N) (A16) 

excited states of Hs may be constructed by 
creating fermions with wavenumbers given by (All). To determine the 
nearest neighbor correlations, one have to express the Pauli matrices with 
fermion operators: 

s X s x +  l = ( C +  - -  C n ) ( C + +  l "31- Cn +1 ) 

and similarly 

s , , -  (c , ,  - c . ) ( c .  + + c , , )  = % , , ( ~ ;  - , T k )  ~ �9 + 
k' 

The averages of these expressions in the ground state may be expressed as 

(0l s:~s~+110 ) = (2/7 0 E(h) + O(1/N z) 

(0[ s,] 10) = (2=)(1/h)[E(h)+ (h 2 -  1) K(h)] + O(1/N z) 
(A19) 

(A15) 

(A17) 

(A18) 

for antiperiodic BC. The 

for periodic BC, and by 

Eft* = - 2  cosec(7~/2N) 

E(x) = ~ 1~/2 (1 - x  2 sin 2 ~)1/2 d0~ (A14) 
J0 

is the complete elliptic integral of the second kind. The ground-state energy 
for finite systems at h* = 1 at the critical point is given by 
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where  

K ( x )  - ~ |,~/2 (1 - x 2 s i n  2 cr dc~ 
--JO 

(A20) 

is the comple t e  ell iptic in tegra l  of the first k ind.  E q u a t i o n s  (A18)  a n d  (A19)  
are va l id  for pe r iod ic  a n d  for an t i pe r iod i c  BCs  as well. F o r  the  first exci ted 

state for h > 1 these e q u a t i o n s  are modi f ied  by  a 2 I N  cor rec t ion  te rm:  

( l l s ~ s ~ + l ] l )  = ( 0 1 s ~ s ~ + l l 0 )  + 2 / N +  O ( 1 / N  2) 

(11 s,~ I 1 ) = (0 l  s~ 10) - 2 / N +  O ( 1 / N  z) 
(A21) 
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